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The broad capabilities of computers have led to the development of various numerical 
methods to calculate profile characteristics. Most of these methods use a finite-difference 
representation of the defining partial differential equations. The method of discrete dis- 
tribution of singularities for calculating incompressible potential flow is fundamentally 
different [I]. It has been shown [2] that this method can also be extended to solving two- 
dimensional Poisson equations, with singularities distributed not only on the boundary, but 
within the flow field. Thus it makes it possible to examine transonic shock-free flow around 
profiles. 

The boundary-element method allows problems to be reduced to one-dimensional ones and to 
reduce computer time significantly. It is based on the assumption that the density quan- 
tities which enter into the integrals are constant in small cells and in every small element 
of the boundary. Because the boundary-element method automatically satisfies allowable 
boundary conditions at infinity, only boundaries such as the contour of the body profile 
have to be discretized. The discretization region does not increase the order of the final 
system of algebraic finite-difference equations, including the Kutta-Zhukovskii conditions. 
The formulation of the problem which leads to its solution is the boundary integral equation 
itself. The error introduced, if the numerical integration is done on a curvilinear boundary, 
can be made very small. Also, numerical integration is always more stable in an exact pro- 
cess than numerical differentiation. 

If we use the relationships 

&~ o~ Or' v O0 Ov O0 
div v = ~ + v 0--~ ' Os M 2 - I On ' On = u Os ( i ) 

the differential equations for vortex-free nonviscous potential flow can be written in the 
form 

Vv = M 2 o ~ / O s .  ( 2 )  

Here s is the direction tangent to the flow line; n is perpendicular to s; e is the inclina- 
tion angle of the velocity vector; and M is the local Math number. Because the flow is vor- 
tex free, after we introduce a perturbation potential ~ such that v = VO + V~, we have from 
(I) and (2) that 

A~o = M 2 0~, 
= Q (M, v) ,  ( 3 )  

where v 0 = V~ is the velocity of the unperturbed flow. The impermeability on the boundary 
contour requires that ~ satisfies 

~ = -vo.n.  ( 4 )  

Numerical realization of the Kutta-Zhukovskii condition with a zero angle on the trail- 
ing edge requires that the tangential velocities at the points $+ and $- be equal on the 
upper and lower surfaces of the profile, respectively, if the condition 

= IV - = -  kl- (5) 
is fulfilled (s < I, and Sk corresponds to the end point of the profile). 

By using finite differences for the derivatives, we represent (5) in the form 

(~+) - ,  (~-) = ~ lvo't (~+) - vo.t (~ - )g  ( 6 )  
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where t i is a vector tangent to the profile at point ~. By using Green's theorem, the poten- 
tial %0 can be written as 

(D = f 1%0 (x) F (x, ~) - o. (x) G (x, ~) l dt + f O (x) G (x, ~) aM, 

( 7 )  G (x, %) = -~-~ In r, r = ~/(xl (x) - xi (%))2 + (x2 (x) - x2 (%))2, 

0 
F (x, ~) = n~ (x) ~x/G (x, ~) = n~ (x) (xr (x) - x,, (~ ) ) /2xr  2, 

where v n is the derivative of %o normal to the boundary. 

The boundary problem is solved numerically by the method of discrete distribution of 
singularities; it is based on the assumption that the densities of Q, %0, and v are constant 
in small cells in the region S and on each small boundary element, which is represented as a 
straight line segment. 

As mentioned before, the boundary-element method automatically satisfies allowable 
boundary conditions at infinity; therefore, only the boundary contour has to be discretized. 
Let it be divided into (N - i) elements, on which the parameters are considered constant. 
In practice, the region in which Q differs from zero is bounded by flow lines above and below 
the profile and is divided into K cells. Then (7) is transformed to 

N - I  :4--1 K I 
~ %0 (~Po) = E.%0 (xq) f F (x% ~{) al (xp) - E v. (xD f a ( xq, ~0 dt(x") + E t2 (x*) f o (x*, ~0) d~ (.:), (8) 

q= 1. ACq q= L aCq k = i A~k 

where ~P pertains to the p-th boundary element; q is the number of the boundary element; and 

u,(x)-%',~ By starting from (8), satisfying (4) at a finite number (N - i) of collocation 
points, and requiring that (6) be fulfilled at point ~N, we obtain a system of nonlinear 
equations, where the unknowns are densities %0 on the boundary elements: 

F"~o = G%, + GnQ. ( 9 )  

The dimensions of quantities entering into (9) are 

dim IIF ~u = (N • N), dim [Ia ~11 = (N • N), 

dim ~Ga~ = (N • K), dim %o = N, dim v, = N, dim Q = K. 

Here 

.[F•,, q ~ p, q = I, N, 
F~ = [ 1 / 2 - - P e p ,  p =  I , N - - I ,  "P~=fF(xa '~e )a lq '  

ACq 

G~=fG(xq,~P)dlq, p = l , N - t ,  q =  1, N; 
aCq 

G,% = f G (x ,  K~P) do~, e, l = I ,  K ,  p = ~ ,  ~tp E ~.  
a% 

The l a s t  e q u a t i o n  i n  ( 9 )  c o r r e s p o n d s  t o  c o n d i t i o n  ( 6 )  f o r  p = N. 

In order to determine Q as a function of M and v ,  we use a finite-difference method with 
values of %01 calculated in AQ by the formula 

N-L K N-I 

%0 (~0 = Y. %0 (xD f F (x t  %g) dl (x r) - ~ v,, (x q) f G (x t  %D at (x p) + ~, (2 (x ~) f G (x ~, %g) dS (x*), 
q=t act q=, acq k=l ~k 

where ~P pertains to AQp; %0 (x q) is the value obtained in the las t i-th iteration; and Q(x k) 
is the value from the (i - l)-th iteration. The iteration process is limited by the formula 

%00) = %0(i-i) , %H (~q-D) 

(H (~(,-1)j = F~q~(,-1~ _ G~v. _ GSQC'-I,). 

F o r  i t s  c o n v e r g e n c e ,  i t  i s  a l w a y s  p o s s i b l e  t o  s e l e c t  a p p r o p r i a t e  v a l u e s  o f  ~ u n d e r  t h e  c o n d i -  
t i o n  that the derivative of H with respect to ~ is limited by the constant K 0 [3]. This is 
obvious for the first two terms. The derivatives of Q with respect to %0 are bounded for any 
triangulation of the region, because the nonlinear part can be represented in the form 

O �9 (./.0fM~ 

I - L~M2o [ l  - (v /vo)2 l  as' 
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and v and Or/as, which enter into this expression, are computed n terms of finite differences 
of ~ (~). The process converges in six to eight steps with a good initial approximation to 
~0; here ~0 corresponds to the solution of Eq. (3) with a zero right side, i.e., an incom- 
pressible fluid. The calculation time is ~20 sec on a PC/AT 386. All this is also valid for 
the transonic region, but only until a shock forms which leads to the growth of K 0 in the 
region and to a deterioration and then absence of convergence. 

Integrals containing in r are "weakly singular" and are calculated in the usual manner 
along the boundary element which passes through the singular point x i = gi, but this function 
has no singularity after integration. Integrals with F(x, g) which contain a singularity on 
the order of i/r are "singular." These integrals assume that matrix of the system of alge- 
braic equations is mainly diagonal and therefore assure the stability of the solution at each 
integration [4]. 

As an example, we chose a profile for transonic shock-free flight. Figure 1 shows the 
distribution of the Mach number for the conditions M 0 = 0.75 and ~ = 0 (curves 1 and 2 corre- 
spond to the upper and lower contours of the profile). The experimental and calculated inte- 
gral profile characteristics are 

C~= 0.129, Cf= 0,130, 
m'~ = -0.046, m ~  = -0.049. 
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